Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice.

Identifieur interne : 002986 ( Main/Exploration ); précédent : 002985; suivant : 002987

Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice.

Auteurs : Hai-Ling Yang [République populaire de Chine] ; Yan-Jing Liu ; Cai-Ling Wang ; Qing-Yin Zeng

Source :

RBID : pubmed:22905132

Descripteurs français

English descriptors

Abstract

Trehalose-6-phosphate synthase (TPS) plays important roles in trehalose metabolism and signaling. Plant TPS proteins contain both a TPS and a trehalose-6-phosphate phosphatase (TPP) domain, which are coded by a multi-gene family. The plant TPS gene family has been divided into class I and class II. A previous study showed that the Populus, Arabidopsis, and rice genomes have seven class I and 27 class II TPS genes. In this study, we found that all class I TPS genes had 16 introns within the protein-coding region, whereas class II TPS genes had two introns. A significant sequence difference between the two classes of TPS proteins was observed by pairwise sequence comparisons of the 34 TPS proteins. A phylogenetic analysis revealed that at least seven TPS genes were present in the monocot-dicot common ancestor. Segmental duplications contributed significantly to the expansion of this gene family. At least five and three TPS genes were created by segmental duplication events in the Populus and rice genomes, respectively. Both the TPS and TPP domains of 34 TPS genes have evolved under purifying selection, but the selective constraint on the TPP domain was more relaxed than that on the TPS domain. Among 34 TPS genes from Populus, Arabidopsis, and rice, four class I TPS genes (AtTPS1, OsTPS1, PtTPS1, and PtTPS2) were under stronger purifying selection, whereas three Arabidopsis class I TPS genes (AtTPS2, 3, and 4) apparently evolved under relaxed selective constraint. Additionally, a reverse transcription polymerase chain reaction analysis showed the expression divergence of the TPS gene family in Populus, Arabidopsis, and rice under normal growth conditions and in response to stressors. Our findings provide new insights into the mechanisms of gene family expansion and functional evolution.

DOI: 10.1371/journal.pone.0042438
PubMed: 22905132
PubMed Central: PMC3414516


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice.</title>
<author>
<name sortKey="Yang, Hai Ling" sort="Yang, Hai Ling" uniqKey="Yang H" first="Hai-Ling" last="Yang">Hai-Ling Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China. yhailing@yahoo.com.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yan Jing" sort="Liu, Yan Jing" uniqKey="Liu Y" first="Yan-Jing" last="Liu">Yan-Jing Liu</name>
</author>
<author>
<name sortKey="Wang, Cai Ling" sort="Wang, Cai Ling" uniqKey="Wang C" first="Cai-Ling" last="Wang">Cai-Ling Wang</name>
</author>
<author>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22905132</idno>
<idno type="pmid">22905132</idno>
<idno type="doi">10.1371/journal.pone.0042438</idno>
<idno type="pmc">PMC3414516</idno>
<idno type="wicri:Area/Main/Corpus">002922</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002922</idno>
<idno type="wicri:Area/Main/Curation">002922</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002922</idno>
<idno type="wicri:Area/Main/Exploration">002922</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice.</title>
<author>
<name sortKey="Yang, Hai Ling" sort="Yang, Hai Ling" uniqKey="Yang H" first="Hai-Ling" last="Yang">Hai-Ling Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China. yhailing@yahoo.com.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yan Jing" sort="Liu, Yan Jing" uniqKey="Liu Y" first="Yan-Jing" last="Liu">Yan-Jing Liu</name>
</author>
<author>
<name sortKey="Wang, Cai Ling" sort="Wang, Cai Ling" uniqKey="Wang C" first="Cai-Ling" last="Wang">Cai-Ling Wang</name>
</author>
<author>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (enzymology)</term>
<term>Computational Biology (methods)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glucosyltransferases (genetics)</term>
<term>Glucosyltransferases (physiology)</term>
<term>Introns (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Oryza (enzymology)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (methods)</term>
<term>Species Specificity (MeSH)</term>
<term>Uridine Diphosphate Glucose (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (enzymologie)</term>
<term>Biologie informatique (méthodes)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Glucosyltransferases (génétique)</term>
<term>Glucosyltransferases (physiologie)</term>
<term>Introns (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Oryza (enzymologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>RT-PCR (méthodes)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Uridine diphosphate glucose (métabolisme)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Uridine Diphosphate Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Crystallography, X-Ray</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Uridine diphosphate glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
<term>Cristallographie aux rayons X</term>
<term>RT-PCR</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Introns</term>
<term>Models, Genetic</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Introns</term>
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'espèce</term>
<term>Structure tertiaire des protéines</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trehalose-6-phosphate synthase (TPS) plays important roles in trehalose metabolism and signaling. Plant TPS proteins contain both a TPS and a trehalose-6-phosphate phosphatase (TPP) domain, which are coded by a multi-gene family. The plant TPS gene family has been divided into class I and class II. A previous study showed that the Populus, Arabidopsis, and rice genomes have seven class I and 27 class II TPS genes. In this study, we found that all class I TPS genes had 16 introns within the protein-coding region, whereas class II TPS genes had two introns. A significant sequence difference between the two classes of TPS proteins was observed by pairwise sequence comparisons of the 34 TPS proteins. A phylogenetic analysis revealed that at least seven TPS genes were present in the monocot-dicot common ancestor. Segmental duplications contributed significantly to the expansion of this gene family. At least five and three TPS genes were created by segmental duplication events in the Populus and rice genomes, respectively. Both the TPS and TPP domains of 34 TPS genes have evolved under purifying selection, but the selective constraint on the TPP domain was more relaxed than that on the TPS domain. Among 34 TPS genes from Populus, Arabidopsis, and rice, four class I TPS genes (AtTPS1, OsTPS1, PtTPS1, and PtTPS2) were under stronger purifying selection, whereas three Arabidopsis class I TPS genes (AtTPS2, 3, and 4) apparently evolved under relaxed selective constraint. Additionally, a reverse transcription polymerase chain reaction analysis showed the expression divergence of the TPS gene family in Populus, Arabidopsis, and rice under normal growth conditions and in response to stressors. Our findings provide new insights into the mechanisms of gene family expansion and functional evolution.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22905132</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice.</ArticleTitle>
<Pagination>
<MedlinePgn>e42438</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0042438</ELocationID>
<Abstract>
<AbstractText>Trehalose-6-phosphate synthase (TPS) plays important roles in trehalose metabolism and signaling. Plant TPS proteins contain both a TPS and a trehalose-6-phosphate phosphatase (TPP) domain, which are coded by a multi-gene family. The plant TPS gene family has been divided into class I and class II. A previous study showed that the Populus, Arabidopsis, and rice genomes have seven class I and 27 class II TPS genes. In this study, we found that all class I TPS genes had 16 introns within the protein-coding region, whereas class II TPS genes had two introns. A significant sequence difference between the two classes of TPS proteins was observed by pairwise sequence comparisons of the 34 TPS proteins. A phylogenetic analysis revealed that at least seven TPS genes were present in the monocot-dicot common ancestor. Segmental duplications contributed significantly to the expansion of this gene family. At least five and three TPS genes were created by segmental duplication events in the Populus and rice genomes, respectively. Both the TPS and TPP domains of 34 TPS genes have evolved under purifying selection, but the selective constraint on the TPP domain was more relaxed than that on the TPS domain. Among 34 TPS genes from Populus, Arabidopsis, and rice, four class I TPS genes (AtTPS1, OsTPS1, PtTPS1, and PtTPS2) were under stronger purifying selection, whereas three Arabidopsis class I TPS genes (AtTPS2, 3, and 4) apparently evolved under relaxed selective constraint. Additionally, a reverse transcription polymerase chain reaction analysis showed the expression divergence of the TPS gene family in Populus, Arabidopsis, and rice under normal growth conditions and in response to stressors. Our findings provide new insights into the mechanisms of gene family expansion and functional evolution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Hai-Ling</ForeName>
<Initials>HL</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China. yhailing@yahoo.com.cn</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yan-Jing</ForeName>
<Initials>YJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Cai-Ling</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Qing-Yin</ForeName>
<Initials>QY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.15</RegistryNumber>
<NameOfSubstance UI="C023180">trehalose-6-phosphate synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V50K1D7P4Y</RegistryNumber>
<NameOfSubstance UI="D014532">Uridine Diphosphate Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014532" MajorTopicYN="N">Uridine Diphosphate Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22905132</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0042438</ArticleId>
<ArticleId IdType="pii">PONE-D-12-07764</ArticleId>
<ArticleId IdType="pmc">PMC3414516</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Feb;131(2):516-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):969-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15181208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Oct;4(10):1614-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16030010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(1):69-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Oct;64(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Mar;274(5):1192-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2002 Dec;9(12):1337-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12498887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Mar;3(2):406-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Nov;6(11):510-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):9269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18201973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(6):e11147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20593022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Aug;32(8):1015-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1582-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Aug;76(6):507-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21598083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Aug;4(8):315-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10431221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2003 Apr;13(4):17R-27R</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 1994 May 23;256(1346):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8029240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jan;146(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981987</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Yan Jing" sort="Liu, Yan Jing" uniqKey="Liu Y" first="Yan-Jing" last="Liu">Yan-Jing Liu</name>
<name sortKey="Wang, Cai Ling" sort="Wang, Cai Ling" uniqKey="Wang C" first="Cai-Ling" last="Wang">Cai-Ling Wang</name>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yang, Hai Ling" sort="Yang, Hai Ling" uniqKey="Yang H" first="Hai-Ling" last="Yang">Hai-Ling Yang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002986 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002986 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22905132
   |texte=   Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22905132" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020